CEREC CHAIRSIDE

CUSTOM ABUTMENTS

PLUS!

Revolutionizing In-office Care With IPS e.max CAD Abutment Solutions
By Darin C. Bryan, D.D.S.

Implant Restorations: A Historical Perspective
By Pete Gardell, D.D.S.
CONTENTS
Q1 | 2014

2 From The Editor
 Wait for It ... It's Finally Here!
 | By Mark Fleming, D.D.S.

SOFTWARE

4 Protocol for Omnicam Imaging and Buccal Bite
 Ensuring the Correct Relationship of the Virtual Models
 | By Bobby Chaggar, D.D.S.

MATERIALS

8 To Glaze or Not to Glaze?
 A Three-year Informal Report on Durability Problems With Glazes Used on e.maxCAD and BruxZir
 | By Rella Christensen, Ph.D.

12 Hybrid Material — A Paradigm Shift?
 Evaluating Some New Restorative Materials for CEREC
 | By Pete Gardell, D.D.S.

PROFILE

58 Dr. Barkley Bastian
 Utilizing Digital Dentistry on Maui
 | By Mark Fleming, D.D.S.

DISCUSSION FORUM

60 Fun on Abutment Day!

HAPPENINGS IN CAD/CAM

64 Showing the World What CEREC Can Do
 | By Sameer Puri, D.D.S.

CASE STUDIES

16 COVER STORY
The Block Release Heard 'Round The World
 IPS e.max Abutment Blocks
 By Mike Skramstad, D.D.S.

24 No Compromise Digital Implant Dentistry
 Utilizing Proper Workflow With 3-D Technology
 | By Tarun Agarwal, D.D.S.

28 Superior Quality, Long-term Temporary 'To Go'
 A Step-by-Step Process Using CEREC
 | By Gerhard Werling, Dr.med.dent

32 VITA Enamic
 A Greater Similarity to Natural Dentition and More Cost-effective Than Previous CAD/CAM Ceramics?
 | By Otmar Rauscher, Dr.med.dent.

36 Implant Restorations: A Historical Perspective
 Life Is a Journey of Learning; Experiences Direct Our Path
 | By Pete Gardell, D.D.S.

42 A Full-mouth Rehabilitation
 Meeting Cosmetic Demands With CEREC Omnicam
 | By Alan Jurim, D.D.S.

48 Guided Surgery in Fully Edentulous Cases
 Part II: The Hopeless Dentition
 | By Farhad E. Boltchi, D.M.D., M.S.

54 Revolutionizing In-office Care With IPS e.max CAD Abutment Solutions
 Development of an Alternative Allowing for Customization and Esthetics
 | By Darin O'Bryan, D.D.S.

COVER PHOTO BY SAMEER PURI, D.D.S.
A Full-mouth Rehabilitation
Meeting Cosmetic Demands with CEREC Omnicam

Patients who have received piecemeal dentistry over the course of many decades are frequently left with a disharmonious and unesthetic smile. Even though it is the desire to improve their cosmetics that often drives these patients to seek treatment, a thorough examination and diagnosis is still needed to ensure the restorative designs and materials chosen are a balance of a three-part goal: arresting all disease processes; preserving maximal sound tooth structure; and providing high-strength restorations.

As demonstrated with this case study, meeting a patient's cosmetic demands with high-quality restorations that provide functional longevity is a goal that can be beautifully reached by the CEREC doctor. The following will detail the step-by-step process of diagnosis, design, long-term provisionalization and delivery of the final restorations of a full-mouth cosmetic rehabilitation completed using Sirona's CEREC Omnicam and Ivoclar's CAD/CAM restorative materials.

Case Study
A 66-year-old female with no significant medical history presented to our office stating she was finally ready to “fix [her] teeth.” A more in-depth interview with the patient revealed she was very unhappy with the esthetics of her smile, and she desired a whiter-yet-natural smile that was more balanced. As with every patient, a comprehensive digital photographic series was taken for documentation and diagnostic purposes. Analysis of these photos with the patient highlighted many cosmetic challenges apparent in her current smile, particularly the presence of disharmonious gingival levels, improper tooth angulations, unsightly show-through of many metal margins and a multitude of old restorative materials of varying shades (Fig. 1). A review of these findings, along with those from a comprehensive dental examination and the patient's radiographs, revealed recurrent decay, failing restorations and cosmetic challenges that would require the patient to have every tooth treated in order to best address her cosmetic goals.

Fig. 1: Pre-operative diagnostic photographic series
Fig. 2: Diagnostic wax-up
Fig. 3: Acrylic jigs in place to maintain desired restorative vertical dimension of occlusion
Fig. 4: Biocopy scan of patient's chairside provisional
Fig. 5: Maxillary CEREC Omnicam full-arch digital impression
Fig. 6: Stitched Biocopy and 100th scans
increase in her vertical dimension. Only at this point in time was a diagnostic wax-up completed with an anterior guidance occlusal scheme to the desired new restorative vertical dimension of occlusion. The diagnostic wax-up was critical to best predicting the realistic cosmetic improvement the patient could expect. It was also useful in producing a stent from which chairside provisional restorations could be made. The patient then presented for a lengthy treatment visit completed under oral conscious sedation in which both the maxilla and mandible were prepped entirely.

The preparation design for each tooth was dictated by both the desire to maintain as much healthy tooth structure as possible and keep the previous restorations present.

Keeping in mind that the desired rehabilitation would increase the patient's vertical dimension of occlusion, three acrylic jigs were made to this new position (Fig. 3). The right side of both arches was then prepared, and the corresponding acrylic jig refined onto the preparations to ensure the desired restorative vertical dimension of occlusion was maintained. The left side of both arches was then prepared and the corresponding jig refined onto the preparations to the desired restorative vertical dimension. Chairside provisionals were then fabricated from Luxatemp (DMG) using putty stents of the diagnostic wax-up. The previously discussed acrylic jigs were used during the fabrication of the chairside provisionals to ensure maintenance of the new vertical dimension of occlusion. The patient was then dismissed without any complications.

Over the next several weeks, the patient was evaluated for occlusal harmony, proper phonetics and overall cosmetic satisfaction with her "new smile." Enough cannot be said about the importance of having the patient functionally comfortable and operating within her entire envelope prior to proceeding with treatment.

The patient then presented for an appointment to complete a full-arch Omnicam scan of the maxilla. A full-arch Biocopy scan of the patient's existing chairside provisional was first made to digitally record their confirmed cosmetics and occlusion with great accuracy (Fig. 4). The teeth preparation designs were then rounded, smoothed and finalized to ideal for CEREC treatment. Various tools were used to best achieve gingival retraction for optical recording. Specifically, a diode laser was used in some areas to trough hyperplastic tissues. In other areas, retraction cord was placed to allow for margin visualization. Lastly, hemostasis was controlled for with 3M retraction paste (3M ESPE).

Once each margin was clearly visible, the full-arch Omnicam scan of the maxilla was made with an OptraGate (Ivoclar), and the Isolite System in place to improve the ease of the digital recording process (Fig. 5). At this time, Sirona's 4.0-level inLab software was used to "stitch" the digital scan of the chairside provisionals with that of the prepared teeth to virtually confirm adequate occlusal reductions had been made (Fig. 6). Once the optical impressioning was completed, all remaining

Enough cannot be said about the importance of having the patient functionally comfortable and operating within her entire envelope prior to proceeding with treatment.

and restore health to her dentition. This proposal — full-mouth cosmetic rehabilitation — was immediately accepted by the patient, given her high degree of motivation.

Treatment started much in the same manner as with any full-mouth reconstruction — with the making of diagnostic impressions and records for case evaluation and ultimately the fabrication of an esthetic diagnostic wax-up (Fig. 2). Review of the mounted diagnostic casts revealed treatment would benefit from increasing the patient's vertical dimension by 2 mm to idealize the amount of restorative space available. The patient was given a removable bite splint appliance which she wore for six weeks to confirm she could tolerate the planned
retraction cords were removed, and a full-arch PVS impression (Kerr) was made of the maxilla to fabricate a working model for the laboratory technician and to allow for marginal cross-verification of the milled restorations.

The full-arch maxillary OmniCam scan, along with the Biocopy scan of the chairside provisional, were then used to design milled CADpro Temps. These proprietary temporary restorations provided by Jurim Dental Studio are ideal for long-term provisionalization. They are made using an industrially produced PMMA of incredible strength and esthetic, and can be milled — in this case with Sirona’s inLab MC XL milling unit. With the margins marked on each tooth preparation by the operator, Jurim Dental Studio’s CAD/CAM team was able to use the Biocopy scan to aid in the design of the CADpro Temps to ensure they best mimicked the desired esthetics and occlusion worked out in the patient’s chairside provisionals. The superior-fitting individual CADpro Temps were then milled and finished by Jurim Dental Studio, and inserted using TeliocCS cement (Ivoclar) (Fig. 7).

While fabrication of CADpro Temps may seem like an added treatment step, it has some tremendous benefits. First off, the delivery of each individual CADpro Temps unit allows for verification that the margin marking on each tooth in the OmniCam scan is accurate (Fig. 8). If any inadequacies are identified, the corrections to the margin marking can be made prior to milling of the final restorations. The occlusion and esthetics of the digital design of each restoration can also be evaluated, and any necessary adjustments can be made prior to the final milling. Lastly, delivery of the well-fitting milled provisional CADpro Temps allowed for the gingival health to improve tremendously prior to delivery of the final restorations, ensuring ideal conditions for insertion of the final case (Fig. 9), not to mention certainly less stress during the delivery appointment.

The patient wore her milled provisionals for several weeks, verifying their accuracy of the duplicated occlusion. After confirmation that she was functioning with complete comfort and that she achieved emotional closure with the esthetics of her CADpro Temps smile, the remaining treatment of milling and delivering the final units was both predictable and easy. The maxilla was restored first. The design of the CADpro Temps in Sirona’s 4.0-level inLab software allowed for the change of material to IPS e.max CAD (Ivoclar). Prior to milling, any minor marginal changes were made to the case, and the final design was updated. Virtual cutbacks of the anterior facial esthetic zone were added to allow the skilled laboratory technician to artistically overlay IPS e.max Ceramic veneering porcelain (Ivoclar) to customize the cosmetics of her smile (Figs. 10-11).

Try-in of the final units with a disclosing medium (GC Fitchecker) revealed excellent marginal fit and seal, and the patient was very pleased with the esthetics. With the patient’s consent, the maxillary units were cleaned for 20 seconds using Ivoclean (Ivoclar), then silanated with MonoBond (Ivoclar) and delivered using Multilink (Ivoclar) as per the manufacturer’s instruction. All excess cement was meticulously removed, and any necessary occlusal adjustments to ensure an anterior guidance scheme
were made to the opposing provision-
alized mandible.

With the maxilla restored against
the provisionized mandible at the
desired new vertical dimension of
occlusion, restoration of the mandible
was completed in three segments to
ensure controlled maintenance of
this position. The posterior mandib-
ular teeth did not pose a big cosmetic
challenge and, therefore, these sepa-
rate areas were completed chairside
using the Omnicam (Sirona) over two
appointments. The teeth were scanned
(Fig. 12), and the units were designed
based off the Biocopy scan of the pro-
visionals in the 4.0-level inLab software.
The occlusion of the proposed resto-
ration was set to the restored maxilla,
and the units were milled using IPS
e.max CAD blocks and the in-office
MC XL machine.

The restorations were then tried-in
intraorally in the blue state to verify their
marginal fit (Fig. 13), and finished using
IPS e.max Glaze (Ivoclar) and a 14-minute
firing cycle in the Programat CS oven
(Ivoclar). These units were prepared
for insertion by etching for 20 seconds
with Etchgel (Ivoclar) and silanated with
Monobond (Ivoclar) and then delivered
in the same manner as the maxillary
units using Multilink (Ivoclar). Once the
two posterior mandibular segments were
restored, the six remaining mandibular
anterior teeth were scanned, designed
and milled from IPS e.max CAD blocks
which were cutback and completed
by a laboratory technician to achieve
the desired esthetics. The same protocol
as previously described was used for
delivery of these final remaining six units.

Final occlusal adjustments were
completed a week later. Post-operative
pictures were then taken two months
after the case was inserted (Fig. 14-15).
These pictures highlight the enhanced
cosmetics of the patient's new smile,
with improved gingival harmony and
health, correction of tooth angulations
and uniformity in shade and restorative
material. The digital CEREC workflow
afforded a degree of predictable and
reproducible control that ensured the
final cosmetic result was long-lasting
and exactly what the patient desired.

The author would like to thank
Adrian Jurim, C.D.T., M.D.T.,
at Jurim Dental Studio for inspiration
and the exquisite technical fabrication
and esthetics of the IPS e.max
restorations featured in this case.

For questions and more information,
Dr. Jurim can be reached at
Alan@jurimdenial.com.